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1. Smoothing of vaccination rate covariates 

The expected rate of acute flaccid paralysis (AFP) is 1 in 100,000 children under 5 years of age, thus the 

sample sizes from each district in a six-month period can be quite small, and range from 0 to 76 in our observation 

period.  Figure 1 shows the in large variability in the observed rate of zero RI dose fraction over time in the Khyber 

and Quetta districts of Pakistan.  It is demographically implausible that the true zero RI dose fraction could vary by 

as much as 40% in a six-month time period.  Thus, instead of including the observed under immunized fractions and 

zero routine immunization fractions in our models we used a space-time smoothing model to estimate an underlying 

rate from which these observations were drawn  

Figure S.1: Observed zero routine immunization rates by six-month time periods in Khyber (left) and Quetta (right) 

districts of Pakistan from 2003-2016.  Point size is scaled by the square root of the number of NP-AFP observations. 

To estimate the underlying rates we considered the hierarchical Bayesian space-time smoothing models.1 In 

the first stage, for each indicator we assume the count in district i and time period t (𝑋𝑖𝑡) is distributed 𝑋𝑖𝑡 ∼

𝐵𝑖𝑛(𝑚𝑖𝑡 , 𝑞𝑖𝑡) where 𝑚𝑖𝑡 is the number of NP-AFP cases and 𝑞𝑖𝑡  and is the underlying rate of interest.   We consider 

the logit linear model 

logit(𝑞𝑖𝑡) = 𝜇 + 𝜃𝑖 + 𝜙𝑖 + 𝛼𝑡 + 𝛾𝑡 + 𝛿𝑖𝑡 

where 𝜇 is the overall risk level, 𝜃𝑖 is a spatially structured effect of district i, 𝜙𝑖 independent effect of time, 𝛼𝑡 is the 

temporally structured, 𝛾𝑡 is the independent effect of time t, and 𝛿𝑖𝑡 is the space-time interaction.  

At the second stage of the hierarchical model, we assign priors to the random effects. The independent effects are 

assigned the priors 𝜙𝑖|𝜎𝜙
2 ∼ 𝑁(0, 𝜎𝜙

2) for i=1,…,I and  𝛾𝑡|𝜎𝛾
2 ∼ 𝑁(0, 𝜎𝛾

2) for t=1,…,T.  The temporally structured 

effect is assigned a second order random walk prior where  𝛼𝑡|𝛼−𝒕, 𝜎𝛼
2 ∼ 𝑁(4(𝛼𝑡+1 + 𝛼𝑡−1)/6 −

(𝛼𝑡+2 + 𝛼𝑡−2)/6, 𝜎𝛼
2/6).  The spatially structured effect is assigned the intrinsic conditional autoregressive prior 

(ICAR)2 where 𝜃𝑖|𝜃−𝒊, 𝜎𝜃
2 ∼ 𝑁(∑ 𝜃𝑗/𝑚𝑖,𝑗∼𝑖 𝜎𝜃

2/𝑚𝑖), where 𝑗 ∼ 𝑖 denotes the districts that have a shared boundary 

with district 𝑖, 𝜃−𝒊  is the vector of 𝜃s excluding 𝜃𝑖, and 𝑚𝑖 is the number of districts that share a boundary with 

district 𝑖. Additional details about the temporally and spatially structured priors can be found in Gaussian Markov 

Random Fields.3 The inverse of all variance parameters were assigned gamma distribution priors with shape 1 and 

scale 0.00005. 



We considered three variations of this space-time model.  In the first we consider no space-time interaction (no 

𝛿𝑖𝑡 parameter).  In the second model an unstructured prior is assigned 𝛿𝑖𝑡| ∼ 𝑁(𝟎, 𝜎𝛿
2).  In the final model we 

considered a second order random walk for each district  𝛿𝑖𝑡 ∼ 𝑁(4(𝛿𝑖,𝑡+1 + 𝛿𝑖,𝑡−1)/6 − (𝛿𝑖,𝑡+2 + 𝛿𝑖,𝑡−2)/6, 𝜎𝛿
2/6).  

All of the random effect variances were assigned inverse Gamma priors.  Models were implemented using the 

Integrated Nested Laplace Approximation (INLA) in the computing environment R (R Core Team, 2015) as 

described by Schrödle and Held (2011). 

The estimated under immunization rates and zero routine immunization dose rates based on the model with no 

space-time interaction, an independent interaction, and the temporally structured interaction are shown in Figures 2 

and 3, respectively.  In both Figures 2 and 3, we see that without including a space-time interaction we do not allow 

different districts to have different temporal trends, which is an unrealistic restriction, with the estimates for Khyber 

looking especially poor.  Additionally, the independent space-time interaction appears to be too flexible and does 

not impose sufficient smoothing.  However, the model with the temporally structured interaction, which corresponds 

to a type II space-time interaction in Schrödle and Held (2011), provides reasonable trends for both rates and was 

selected for smoothing the covariates.  

 

Figure S.2: Observed under immunized (less than three OPV doses) rate and smoothed values based on models with 

independent, temporally structured, or no space-time interaction in Khyber and Quetta districts of Pakistan. 

 



 

Figure S.3: Observed zero routine immunization dose rate and smoothed values based on models with independent, 

temporally structured, or no space-time interaction in Khyber and Quetta districts of Pakistan. 

 

2. Poisson Hurdle Model 

To model the risk of wild poliovirus serotype one (WPV1) in districts of Pakistan we implemented a spatial 

Poisson hurdle model6 similar to the model that was used to model WPV1 and WPV3 in Nigeria by Upfill-Brown et 

al. (2014).  The spatial Poisson hurdle model is a two-part model that jointly models the probability of at least one 

WPV1 and the number of WPV1 given at least one. 

Formally, if we assume 𝑦𝑖𝑡 is the number of confirmed WPV1 cases in district 𝑖 at time 𝑡, for 𝑖 = 1, … , 𝐼 

and 𝑡 = 1, … , 𝑇, and 𝑧𝑖𝑡 is an indicator of 𝑦𝑖𝑡 > 0, then we model 𝑧𝑖𝑡|𝑝𝑖𝑡 ∼ Bern(𝑝𝑖𝑡) with  

logit(𝑝𝑖𝑡) = 𝜂1 + 𝜷1𝑿𝑖,𝑡−1,1 + 𝑢𝑖1 + 𝑣𝑖1 

and for 𝑧𝑖𝑡 = 1 we model 𝑦𝑖𝑡|𝜆𝑖𝑡 ∼ Truncated Poisson(𝜆𝑖𝑡) with 

log(𝜆𝑖𝑡) = 𝜂2 + 𝜷2𝑿𝑖,𝑡−1,2 + 𝑢𝑖2 + 𝑣𝑖2 + 𝜖𝑖𝑡 + log(𝑁𝑖𝑡) 

where 𝜂1 and 𝜂2 are the intercepts, 𝜷1 and 𝜷2 are the coefficients for the indicators, 𝑢𝑖1 and 𝑢𝑖2 represent 

independent district effects, 𝑣𝑖1 and 𝑣𝑖2 represent spatially structured district effects, 𝜖𝑖𝑡  are observation level 

random effects to account for overdispersion, and 𝑁𝑖𝑡 is the population of district 𝑖 at time 𝑡.  The 𝑿𝑖,𝑡−1,1and 

𝑿𝑖,𝑡−1,2represent the covariates, such as smoothed zero routine immunization dose rate, from district 𝑖 at time 𝑡 − 1. 

In our application of the model this represents a 6-month lag. 

The truncated Poisson distribution takes the form 

𝑃(𝑌𝑖𝑡 = 𝑘) = 𝑝𝑖𝑡

𝜆𝑖𝑡𝑒−𝜆𝑖𝑡

𝑘! {1 − 𝑒−𝜆𝑖𝑡}
,   𝑘 = 1, … , ∞, 

where 𝑘 is the number of WPV1.  The expected number of WPV1 for the next time period 𝑡 + 1 takes the form 

𝐸[𝑌𝑖,𝑡+1] = 𝑝𝑖,𝑡+1 ⋅
𝜆𝑖,𝑡+1

1 − 𝑒−𝜆𝑖,𝑡+1
 



and is used as the “risk score” for ranking the districts. 

 In the hierarchical Bayesian setting we also need to assign prior distributions to each parameter.  Flat priors 

are assigned to 𝜂1 and 𝜂2.   Diffuse normal priors are assigned to the covariate effects 𝜷1 and 𝜷2.  The district-level 

random effects are assigned a bivariate Normal prior, [𝑢𝑖1, 𝑢𝑖2]𝑇|Σ ∼ 𝑁2(𝟎, Σ) with Σ = [
𝜎𝑢1

2 𝜌

𝜌 𝜎𝑢2
2 ]  and the 

spatially structured random effects 𝑣𝑖1 and 𝑣𝑖2 are assigned ICAR priors. Finally, the Wishart is assigned to Σ−1 

with 4 degrees of freedom and a scale matrix with ones on the diagonal entries and zeros on the off-diagonal entries 

and gamma distributions with shape 1 and scale 0.00005 are assigned to the inverse of the variance components of 

the ICAR priors and the observation level random effect. 
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